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THE DYNAMICAL EFFECTS IN THE GROSS-NEVEU
AND POLYACETYLENE MODELS

V.K.Fedyanin, V.A.Osipov, |.S.Stoyanova

The physical characteristics of the moving solitons
in the Gross-Neveu and polyacetylene models are calcu-
lated. It is found that the contributions to the charge
and mass of solitons due to motion take place. In the
case of the polaronic excitations the dynamic correc-
tion to the mass has a remarkable value (~37Z). In the
Gross-Neveu model the complete dynamical mass of soli-
tons is only due to the fermion dynamics.

The investigation has been performed at the Labo-
ratory of Theoretical Physics, JINR.

Aunamnueckme 3dpexkTt B8 Mogenax pocca-Hesbe
“ nonuayeTuneHa

B.K.®egsaHun, B.A.OcunoB, HU.C.CrosamoBa

O6cyxpaercs MooudbMKaAUMA (HU3HUECKHX XapaKTEepHCTHK
OBHXYMMXCA CONHUTOHOB B Mozeiax ['pocca-HeBbe u mnomuapne—
THIIeHa. BelUypcieHsl nMOonNpaBKH K 3apsOy U Macce COIMTOHOB,
O6YyCIIOBJIEHHbIE MX [OBMXEHHeM, B cnyuae nMoNspOHHOrO BO3-—
6yxOeHHs IHHaMUuecKas mnonpaBKa K Macce BeCbMa CcymecT-
Beuna /~37%/. B Mopmemu I'pocca-HeBme yueT sbdexTa OBH-
KEHHHA TIPHBOOUT K BO3HHKHOBEHHIO OUHAMHYECKOHl MacCh Co-

JIUTOHOB,
Pa6ora Bnimonuena B JlaGoparopuu TeopeTHYECKoit OH3UKH
OUsH.
. £ /1.2/ bl . 1d -
1. It was shown in refs. that in the mean field ap

proximation the static equations of motion in both the n=2
Gross-Neveu (GN) model field theory and the continuum
trans-polyacetylene (CH)x model are equivalent, Some im-
portant corollaries of this connection have been investi-
gated in refs/*% | 1n rgffq/ the static solutions (kink,
polaron) to the semiclassical equations of the GN model
were constructed. The analogous static localized excitati-
ons are contained in (CH)y, and play a remarkable role in
describing the physical properties of trans - (CH)x chains.,
The dynamical properties of the GN and (CH)y models are
quite different. The discrepancy is because of the distinct
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physical background of the scalar field o(x,t) in the GN
model and of the optical phonon field A(x,t) in (CH)y . The

o field is an auxiliary composite object that dogs not des-
cribe the real bosons because the kinetic term o¢¢ is ab-
sent in the GN model. The whole dynamics of the o field

is due to fermions (when the fermion quantum corrections
are included) whereas in (CH), the field A(x,t) has a ki-
netic term Af.

As a consequence, the dynamical equations of motion for
both models have a sufficiently different form. So, the
complete system of equations of the GN model are invariant
under the Lorentz transformations whereas it is not the
case for the (CH)x model. It was shown in ref.% that in
the limit of slowly moving solitons the dynamical proper-
ties of both models are formally equivalent, i.e., the
system of equations of motion in (CH)y 1is reduced to that
in the GN model and has the form

fu, (1,1) = ~1Vp U (x,t) + Ax, 1) V(x,1)

(1a)
iv, (x,t) = 1Vva(x,t) + Alx,t)u®x,t)
together with the self-consistent gap equation
Ax,t) =-QAnVg )kZ;’ (u*;‘(x,t) vk(x.t) + v: x,t) uk(x.t)). (1b)

Here, the electronic wave functionsu(x,t) , v(x,t)are norma-
lized to unity fdX(luk(x.t)I2+|Vk(x.t)F3)=l.The summation in
—00

(1b) is over the two-spin states for every energy level up
to the Fermi energy, that is chosen to be zero. In (1) Vg
and A are the Fermi velocity and the effective electron-
phonon coupling constant, respectively. The transition to
the GN model is obtained by making the transformations

1 . 1 . 2
U e (g +ihp), Vo w=(fy —idg), Asggyn® A7Vp-sggy, Vp-C,
Ve Ve

¥
s +a, where */l=(¢,;)is a two-component Dirac spinor, EgnN

and C are the coupling constant and light velocity, res-
pectively; a={1,..nlis the internal SU(n) symmetry index.

As in the static case, there are three classes of solu-
tions to eqgs.(1). The first class corresponds to the homo-
geneous ground state A= Ag =Wexp(-1/2X).In (CH), W is the
full band width, W=2kgVp,where kyp is a Fermi momentum.In
the GN model W=2A , where A is an unphysical cut-off in-
troduced to make the theory finite. The electron wave fun-
ctions in the valence band are the usual plane waves with
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density pi= 5%7 . The second class of solutions in (CH)g

are the kinks. The exp11c1t forms for the wave functlons
are given in ref. /% | The third class of solutions are"po-
larons". The mov1ng polaron can be obtained in an analo-
gous manner using the invariance of eqs.(1) under the Lo-
rentz transformation. The precise form of these solutions
would be published in a separate article. Note that the
kink solution has a zero energy bound state (E=0) in the
fermion energy spectrum whereas the polaron solution has
two symmetrical discrete levels at E=twg.

In our article the physical characteristics of the mov-
ing kink and polaron (the energy of formation, mass,charge)
are calculated.

2. In the presence of an inhomogeneous deformation the
change in the local electronic density can be written in
the form

8O = 5 ny pp @+ % 10O -5 O] 2)

where the term pB(f) is due to the i-th bound state with

the occupation number np; , and pk(é) is the contribution
of the negative energy scattering states. The electric
charge of soliton is defined as Q=e[ Ap(£)df.In the case
of the moving kink, _we ol obtain

Q =e(n, --—arcthﬁ——) 3)

where B=v_/Vp, v  is a soliton velocity, ng is an occu-
pation number of the discrete level at E=0. In the limit

W we come to the result Qo=eﬁm-§0-1n (CH), n = and
Qg =e(ng-1) . When ng=1,the solitonic charge is Qg =0 where-
as the spin s =1/2. For n =1 we have Qo=+-§-l el , i.e., the

effect of the fermion charge fractionalization in the pre-
sence of a soliton takes place. At finite value of W using

the approximation 8<<1 ,where &= VVE’ we obtain from eq.(3)
2nlAg
»WVI=B2
case of a neutral soliton a small charge proportional to 8
appears in agreement with the result of paper/el. In (CH)g
we need to use the limit B%<<1. In this case the contribu-
tion to the charge of kink due to the velocity parameter B
is additionally reduced by the small parameter & . Note
that for (CH), 5 ~ 0.07.

that @=Q; +3Q , where 8Q =e . Thus, even in the
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The kink creation energy can be calculated on the basis
of the method developed in ref.
We obtain

=HAO+ AQ 82

Bs== A \ff:iﬁ?'

(4)

where the first term corresponds to the well-known crea-
tion energy of the static kink’®% | The second term de-
termines the dynamical correction to the mass of the kink
_RAg

7AVE
This important result implies that in the GN model,
where the kinetic term is absent and as consequence Mg =0,

excitation. At small values of B we have &M, =

the finite dynamical mass of a kink appears. In (CH)x
3

MA
Ms=31rK)\(i/F =8m , where M and K are the parameters of
the (CH)y model and m, is an electron mass. Thus, in
(CH);, we have 5M,~0.08M_ ,i.e., the correction is consi-
derable (~10%Z) contrary to the statement of the authors
in ref,’8/.

3. Let us propose that the polaronic level E=-uq(wg)
has the occupation number f(ny) respectively. The change
in the local density in the presence of a polaronic de-
formation takes the form

' 2 S——
Ap(§) = I—Z—'?-(Sechzl{pf+ +sech K& ){(ng+n) ~ -?;u—\/l—;s2 arctgéﬁ-wv—-w
O'F
(5)
2 a0 S ——
e 2 RV (20 werg W17 R arcrg N1y,
" (K2VE(1-B%) -A5) KoVr 28, 2KV
Ko

where {+ =x-y, t+Xg , V, is a polaron velocity, K, =\/-—-—-___E.!.—;-—
1-8°

and K Vg =\/'A(2,—w(2,, ﬁ=Vp /Ngp. In the limit caseW »» , we

obtain from eq. (5) the charge of a static polaron Qgsseno.
In (CH)x n, =1 and Q= e |, i.e., we have the excitation
with the standard relation of charge (-e) and spin (1/2)
corresponding to the usual polaron. In the case of the
moving polaron and in the limit 8%<<1 an additional term

" proportional to 8% appears

QP -al+sap (6)
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sqf —g2en “0"0'F . -0 '
where 3 ="~ AT RVo When ;0 we have thatKgVo-A,
and 8QZ->0 in accordance with the result for the kink
where no correction terms proportional to 132 appear in

the limit W+ « for the charge of the excitation state.

. _4
In (CH); the level wg is fixed wy=K Vo=—— g0 that
5aP =0,17e 82, Ve

Consider now the correction terms proportional to 8.
From eq.(5) we obtain

Q® =qp +8@? +saqy, €)

' 2
where 87, = Zo0F o and 5a%- 0% + 28 5al,
w

When wg+0 we have SQ&-*szzt in accordance with the
fact that in this limit the polaronic state "decays" into
an infinitely far appart kink-antikink pair state. In
(CH)y 8Q%,= 0.09e.

We calculate the energy of the polaron excitation in
the model and obtain the result:

1-g° .
Ep:%-n_. KoV {1+ @ d-£7) arctg Yo }
V1-B% K, Vpl1+8° Ko Ve KoVr
@o (8)
» 2
+—-§£{—QY-EE—_-_+(nO-n )wo.
A/ 1-8%

Taking into account only correction terms proportional to
we get from (8)

2n Wy
Ep = o [ Ky Vg +og arctg

KOVF] + (My—n) e, +
€))

2K,V
2,0 ] o] 0'F
+ B —(K V. )[1-3(==0—) arctg 1+ |
7 OF KoVp KOVF 7 X

The last term in (9) determines the dynamical contributi-
on to the polaron mass. In (CH); we have
_2ve Ay

”

Ep

V2 Ag 37, L1a2
* - [1 1 +A]ﬁ . 10)
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where the first term corresponds to the energy of creation
of the statiec polaron whereas the second term gives the

nV2 @-'z-+

+%r)=037Mp, where Mp is obtained from the kinetic term

dynamical correction to the polaron mass BMp_

in the Hamiltonian and has a value M _.13m, . Thus, the
effect of the polaron motion gives rise to a considerable
contribution to the polaron mass.

In conclusion we note that the obtained results have
a great importance in describing the electrical and trans-
port properties of the trans-(CH)x chains as well as in
relativistic quantum field theory where the dynam1ca1 mas-—
ses of solitons appear due to motion.

We would like to thank Dr. S.A.Brazovskii for directing
our attention to these problems and useful discussion of
the results,
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